

ECS455: Chapter 4

Multiple Access

4.8 IS-95

Dr.Prapun Suksompong prapun.com/ecs455

Office Hours:			
BKD, 6th floor of Sirindhralai building			
Tuesday	14:20-15:20		
Wednesday	14:20-15:20		
Friday	9:15-10:15		

Evolution of cellular network

Figure 1.1 Evolution of 2G networks based on TDMA technology.

[Abu-Rgheff, 2007]

The first CDMA demo

[https://www.youtube.com/watch?v=1X9wWnnXcZc]

IS-95 System cdmaOne

- Based on direct sequence CDMA (**DS-CDMA**)
 - **First** CDMA-based digital cellular standard.
- The brand name for IS-95 is cdmaOne.
 - Also known as TIA-EIA-95.
- Proposed by Qualcomm in 1989 and adopted in 1993.
 - North America
- Replaced by IS-2000 (CDMA2000)
- 1.25 MHz Channel BW
- 1.228 Mb/s chip rate
- WH sequences of order 64 are extensively used in the IS-95 system.
- Remarks
 - IS-95B = cdmaOne
 - Upgrade IS-95A
 - Can carry data at rates up to **14.4 kbps** for IS-95A and **115 kbps** for IS-95B.

Walsh and WH Sequences of order 64

as indexed in IS-95

× .	-		
Wa	Ha	000000000000 000000000000 0000000 000000	W
W63	H_1	0101010101010101 010101010101010101 010101010101010101 01	Wer
Wan	H_2	0011001100110011 0011001100110011 0011001100110011 0011001100110011	W30
Wa	H_{1}	0110011001100110 0110011001100110 0110011001100110 0110011001100110	W33
Wis	H_4	0000111100001111 0000111100001111 0000111100001111 0000111100001111	W14
W48	Hs	0101101001011010 0101101001011010 0101101	W49
W16	H_6	0011110000111100 0011110000111100 0011110000111100 0011110000111100	W17
W47	H_7	0110100101101001 0110100101101001 011010010	W_{46}
W_7	H_8	0000000011111111 0000000011111111 000000	W_6
Wss	Ho	0101010110101010 0101010110101010 01010101010101010 01010101010101010	W_{s7}
W24	H_{10}	0011001111001100 0011001111001100 0011001111001100 0011001111001100	W25
W39	H_{11}	0110011010011001 0110011010011001 0110011010011001 0110011010011001	W_{38}
Ws	H12	0000111111110000 0000111111110000 0000111111	Wo
Wss	H13	0101101010100101 0101101010100101 0101101	W 54
W23	H14	0011110011000011 0011110011000011 0011110011000011 0011110011000011	W22
W40	H_{15}	0110100110010110 0110100110010110 0110100110010110 0110100110010110	W_{41}
W ₃	H_{16}	000000000000000 111111111111111 00000000	W_2
W60	H.,	0101010101010101 1010101010101010 010101010101010101 10	W_{61}
W28	H_{18}	0011001100110011 110011001100100 0011001100110011 1100110011001100	W_{29}
W35	H19	0110011001100110 1001100110011001 0110011001100110 1001100110011001	W_{34}
W12	H_{20}	0000111100001111 1111000011110000 0000111100001111 1111000011110000	W_{13}
Wsi	H_{21}	0101101001011010 1010010110100101 0101101	W30
W19	H22	0011110000111100 1100001111000011 0011110000111100 1100001111000011	W_{18}
W44	H_{23}	0110100101101001 1001011010010110 011010010	W_{45}
WA	H24	0000000011111111 111111100000000 0000000	Ws
W59	H25	0101010110101010 1010101001010101 01010101010101010 10	W_{58}
W27	H_{26}	0011001111001100 1100110000110011 0011001111001100 1100110000110011	W_{26}
W36	H27	0110011010011001 1001100101100110 0110011010011001 1001100101100110	W_{37}
W11	H_{28}	0000111111110000 1111000000001111 0000111111	W_{10}
W52	H29	0101101010100101 101001010101010 0101101	W53
W_{20}	H ₃₀	0011110011000011 1100001100111100 0011110011000011 1100001100111100	W_{21}
W43	H_{31}	0110100110010110 1001011001101001 0110100110010110 1001011001101001	W_{12}

 $\begin{array}{c} H_{32} \\ H_{33} \\ H_{34} \\ H_{35} \\ H_{35} \\ H_{35} \\ H_{35} \\ H_{36} \\ H_{37} \\ H_{38} \\ H_{39} \\ H_{40} \\ H_{41} \\ H_{42} \\ H_{44} \\ H_{45} \\ H_{46} \\ H_{47} \end{array}$ 0011110000111100 0011110000111100 1100001111000011 1100001111000011 0011110011000011 0011110011000011 1100001100111100 1100001100111100 0110100110010110 0110100110010110 1001011001101001 1001011001101001 $\begin{array}{c} H_{48} \\ H_{49} \\ H_{50} \\ H_{51} \\ H_{52} \\ H_{53} \\ H_{53} \\ H_{53} \\ H_{55} \\ H_{55} \\ H_{55} \\ H_{55} \\ H_{59} \\ H_{60} \\ H_{61} \\ H_{62} \\ H_{63} \end{array}$ 0110100110010110 1001011001101001 1001011001101001 0110100110010110

[Lee and Miller, 1998, Table 5.8]

WH Sequences in IS-95

Forward link (Downlink)

- QPSK with a chip rate of 1,228,800 per second.
- The **multiple access scheme** is accomplished by the use of 64-bit spreading orthogonal **WH sequences** (functions).
 - The (coded and interleaved) traffic channel signal symbols are multiplied with distinct repeating WH sequences that are assigned to each channel for the duration of the call.
- Every base stations is synchronized with a GPS receiver so transmissions are tightly controlled in time.

Reverse link (Uplink)

• The WH sequences are employed as an **orthogonal modulation code**, which <u>depends only on the data pattern</u> (not channel), forming a 64-ary orthogonal modulation system.

Receiver

IS-95

- The **reverse link** is subject to near-far effects.
- More powerful **error correction** is employed on the reverse link.
 - A rate 1/2 constraint length 9 convolutional code followed by an interleaver on the forward channel
 - A rate 1/3 constraint length 9 convolutional code followed by an interleaver is used on the reverse link.
 - Also with WH(6,64)
 - Interleaving is utilized to avoid large burst errors, which can be very detrimental to convolutional codes.

• Power control.

- Use a subchannel on the forward link
- Every 1.25 ms the base station receiver estimates the signal strength of the mobile unit.
- If it is too high, the base transmits a 1 on the subchannel. If it is too low, it transmits a 0.
- In this way, the mobile station adjusts its power every 1.25 ms as necessary so as to reduce interference to other users.

IS-95: Increased Spectral Efficiency

- Improve frequency reuse.
 - Narrow-band systems cannot use the same transmission frequency in adjacent cells because of the potential for interference.
 - CDMA has inherent resistance to interference.
 - Cluster size (N) = 1 (theoretically)
 - Although users from adjacent cells will contribute to interference level, their contribution will be significantly less than the interference from the same cell users.
 - Frequency reuse efficiency increases by a factor of 4 to 6.
- When used to transmit voice signals, CDMA systems may exploit the fact that voice activity typically lies at somewhat less than 40%, thus reducing the amount of interference to 40% of its original value.

